POWER SERIES METHOD IN SOLVING DIFFERENTIAL EQUATIONS IN THE OSCILLATION BRANCH IN PHYSICS

Code: 221010563
Downloads
9
Views
71
Compartilhe
Título

POWER SERIES METHOD IN SOLVING DIFFERENTIAL EQUATIONS IN THE OSCILLATION BRANCH IN PHYSICS

Autores(as):
  • Mateus Silva Rêgo

  • Gilserlane Silva Martins Junior

  • Fernando Wesley Pinheiro Brito

DOI
  • DOI
  • 10.37885/221010563
    Publicado em

    29/12/2022

    Páginas

    421-433

    Capítulo

    29

    Resumo

    The differential equations appear with many frequencies in the studies of the physical phenomena, as in the rocks present in the branch of the classic mechanics, in the quantum and in the electromagnetism. In particular, there are a wide variety of keys of their equations that are 2nd order variables, especially with constants, be they ordinary or partial. The purpose of this work is the resolution of some differential equations that appear in Physical-Mathematical problems, using the Power Series method, emphasizing Theoretical Physics, aiming at mathematics as a tool of physics and showing its rigor. For this, it is necessary to use certain methods, properties or axioms. Differential equations are many found in physical problems such as: The wave equation, which led to the invention of radio, radar, television and wireless connections; In mechanics, as oscillations: damped oscillations, forced oscillations, simple harmonic motion, the spring mass system, the mathematical pendulum; In electricity, the RL system, in thermodynamics, the heat equation and so on. It is important to emphasize that these problems can be solved by other methods, because mathematics offers us many avenues and in this way, the physical understanding will be established.

    Ler mais...
    Palavras-chave

    Power series, Differential Equation, Forced Oscillations, Damped Oscillations, Simple Harmonic Motion.

    Publicado no livro

    OPEN SCIENCE RESEARCH VII

    Licença

    Esta obra está licenciada com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.

    Licença Creative Commons

    O conteúdo dos capítulos e seus dados e sua forma, correção e confiabilidade, são de responsabilidade exclusiva do(s) autor(es). É permitido o download e compartilhamento desde que pela origem e no formato Acesso Livre (Open Access), com os créditos e citação atribuídos ao(s) respectivo(s) autor(es). Não é permitido: alteração de nenhuma forma, catalogação em plataformas de acesso restrito e utilização para fins comerciais. O(s) autor(es) mantêm os direitos autorais do texto.

    Este site utiliza cookies. Usamos cookies para personalizar conteúdo e anúncios, fornecer recursos de mídia social e analisar nosso tráfego. Ao continuar você concorda com a nossa política de utilização de cookies.

    Continuar