EXPLORING INTERPRETABILITY IN MACHINE LEARNING MODELS FOR HEALTHCARE DECISION SUPPORT SYSTEMS

Code: 241218372
Downloads
0
Views
3
Compartilhe
Título

EXPLORING INTERPRETABILITY IN MACHINE LEARNING MODELS FOR HEALTHCARE DECISION SUPPORT SYSTEMS

Autores:
  • Leandro Zanon Siqueira

  • Lilian Berton

DOI
  • DOI
  • 10.37885/241218372
    Publicado em

    25/04/2025

    Páginas

    412-427

    Capítulo

    19

    Resumo

    This project aims to study Machine Learning applications in health-care decision support systems. The main objective is to use an explainable method (SHAP/LIME) to understand how black-box models make their decisions, promoting transparency between systems decisions in such a critical context. The research problem was set as a binary classification problem using the MIMIC-IV-ED dataset, we intend to predict patients with chest pain will be discharged based on features collected during triage and first medical contacts. The pipeline integrates a comprehensive preprocessing step, where numerical features are standardized, and categorical features are one-hot encoded. The models tested include logistic regression, random forest, support Vector Machines, XGBoost, and LightGBM. To address the class imbalance, the pipeline compares a random under-sample and over-sample method. Hyperparameter optimization is performed using random search to choose the best parameters for each model, and model parameters are fine-tuned to enhance predictive performance. The primary goal is to create an efficient and accurate binary classification model, providing valuable insights for clinical decision-making in emergency department settings.

    Ler mais...
    Palavras-chave

    Interpretability; Machine learning; Healthcare; Decision support systems

    Licença

    Esta obra está licenciada com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional .

    Licença Creative Commons

    O conteúdo dos capítulos e seus dados e sua forma, correção e confiabilidade, são de responsabilidade exclusiva do(s) autor(es). É permitido o download e compartilhamento desde que pela origem e no formato Acesso Livre (Open Access), com os créditos e citação atribuídos ao(s) respectivo(s) autor(es). Não é permitido: alteração de nenhuma forma, catalogação em plataformas de acesso restrito e utilização para fins comerciais. O(s) autor(es) mantêm os direitos autorais do texto.

    PlumX